Central Auditory Plasticity: Changes in the N1-P2 Complex after Speech-Sound Training

Kelly Tremblay, Nina Kraus, Therese McGee, Curtis Ponton, and Brian Otis

Objective: To determine whether the N1-P2 complex reflects training-induced changes in neural activity associated with improved voice-onset-time (VOT) perception.

Design: Auditory cortical evoked potentials N1 and P2 were obtained from 10 normal-hearing young adults in response to two synthetic speech variants of the syllable /ba/. Using a repeated measures design, subjects were tested before and after training both behaviorally and neurophysiologically to determine whether there were training-related changes. In between pre- and post-testing sessions, subjects were trained to distinguish the −20 and −10 msec VOT /ba/ syllables as being different from each other. Two stimulus presentation rates were used during electrophysiologic testing (390 msec and 910 msec interstimulus interval).

Results: Before training, subjects perceived both the −20 msec and −10 msec VOT stimuli as /ba/. Through training, subjects learned to identify the −20 msec VOT stimulus as “mba” and −10 msec VOT stimulus as “ba.” As subjects learned to correctly identify the difference between the −20 msec and −10 msec VOT syllabi, an increase in N1-P2 peak-to-peak amplitude was observed. The effects of training were most obvious at the slower stimulus presentation rate.

Conclusions: As perception improved, N1-P2 amplitude increased. These changes in waveform morphology are thought to reflect increases in neural synchrony as well as strengthened neural connections associated with improved speech perception. These findings suggest that the N1-P2 complex may have clinical applications as an objective physiologic correlate of speech-sound representation associated with speech-sound training.

The present study examines whether the N1-P2 complex event-related potential (ERP) holds promise as a clinical tool for assessing central auditory speech representation as well as changes in neural activity associated with auditory (re)habilitation. The N1-P2 complex is an obligatory ERP that can reflect central auditory speech representation without active patient participation (Martin, Sigal, Kurtzberg, & Stapells, 1997; Ostroff, Martin, & Boothroyd, 1998; Sharma & Dorman, 1999, 2000; Whiting, Martin, & Stapells, 1998). This makes the N1-P2 complex promising for assessing individuals who are affected by communicative or cognitive impairments by providing a window to the brain that is largely free of behavioral confounds such as memory and cognition.

The N1 response reaches maximal amplitudes at fronto-central sites (Vaughan & Ritter, 1970). Depending on the duration of the stimulus, the N1 response manifests itself as a negativity with a peak latency of approximately 100 msec followed by a positivity, labeled (P2), with a peak latency of approximately 175 msec. (Wood & Wolpaw, 1982; Woods, 1995). The N1-P2 complex is thought to reflect synchronous neural activation of structures in the thalamic-cortical segment of the central nervous system in response to auditory stimulation (Naatanen & Picton, 1987; Woods, 1995; Wolpaw & Penry 1975). Several temporally overlapping, spatially distributed neural sources contribute to scalp recorded potentials in the latency region of the N1-P2. However, dipole source models of ERPs and auditory-evoked magnetic fields indicate that the N1-P2 likely reflects neural activity originating from tangentially oriented generator sources located in the supra-temporal plane, in or near primary auditory cortex (Hari, Aittoniemi, Jarvinen, Katila, & Varpula, 1980; Naatanen & Picton, 1987; Scherg & von Cramon 1985; Wood & Wolpaw, 1982).

Several studies have shown that the N1-P2 complex reflects many of the spectral and temporal cues contained in spoken language that are critical for speech perception (Martin et al., 1997; Ostroff et al., 1998; Whiting et al., 1998; Woods & Elmasian, 1986). The temporal cue of interest in this study, voice-onset-time (VOT), is defined as the interval between the release from stop closure and the onset of laryngeal pulsing. For English speakers, increas-
ing VOT changes the perception of /ba/ to /pa/. Pre-voiced sounds are produced when the onset of voicing precedes release of the stop consonants. The English language does not use pre-voicing phonemically. That is, English speakers describe pre-voiced /ba/ sounds to be no different than /ba/ exemplars that are not pre-voiced (Tremblay, Kraus, Carrell, & McGee, 1997; Tremblay, Kraus, & McGee, 1998). However, perception can be altered by experience. With little training, listeners can learn to form arbitrary categories (Carney, Widen, & Viemeister, 1977; McClaskey, Pisoni, & Carrell, 1983). For example, monolingual speakers of English were trained to distinguish between two pre-voiced /ba/ syllables. They learned to label one pre-voiced /ba/ syllable as “mba” and another as “ba” (Tremblay et al., 1997, 1998).

The purpose of this study was to determine whether modifying VOT perception alters neural activity, and whether training-induced changes in neural activity are reflected in the N1-P2 response. This line of investigation is supported by two areas of research reviewed below. First, there is evidence that acoustic components of speech signals such as VOT are reflected both in near and far-field evoked potentials. Second, the structure of the N1-P2 complex is plastic; that is, it reflects changes in neural activity after stimulation and deprivation.

Neural Encoding of VOT

Acoustic components of speech signals including VOT are reflected in near and far-field evoked potentials in both animals and humans (Eggermont, 1995; Kurtzberg, 1989; Martin et al. 1997; McGee, Kraus, King, & Nicol, 1996; Poeppel et al. 1996; Roberts, Ferrari, & Poeppel, 1998; Roberts & Poeppel, 1996; Sharma & Dorman, 1999, 2000; Sinex & McDonald 1989; Sinex et al., 1991; Steinschneider, Schroeder, Arezzo, & Vaughan, 1994,1995; Steinschneider, Reser, Schroeder, & Arezzo, 1995; Steinschneider, Volkoc, Noh, Garell, & Howard; 1999; Whiting et al. 1998). These studies show that waveform morphology, specifically peak latency, are sensitive indicators of temporal cues. For example, neurons in monkey auditory cortex showed two distinct peaks in response to the consonant-vowel stimulus /ta/, but only a single peak in response to /da/ (Steinschneider et al., 1994). The double-peak response was considered to reflect VOT because the first peak elicited by /ta/ corresponded to the aspiration and the second peak corresponded to the onset of voicing. Because VOT of the /da/ stimulus approximated zero, only one peak was observed.

Similar VOT response patterns have been reported in cats and guinea pigs (Eggermont, 1995; McGee et al., 1996) and most recently in humans (Sharma & Dorman, 1999; Steinschneider et al., 1999). Together these studies demonstrate that near and far-field potentials, both in animals and humans, reflect neurophysiologic coding of temporal cues. Furthermore, patterns of neural activity that are time-locked to the onset of the stimulus, and then again at the onset of voicing, may contribute to our perception of phonemes. Given this relationship, does altering perception through training modify the basic neural representation of the speech-sounds used in training? There are no existing studies on the effects of speech-sound training on the N1-P2 complex. However, previous work has demonstrated that the N1-P2 complex reflects experience-related changes in neural activity.

The N1-P2 Complex Reflects Central Auditory Plasticity

Latency and amplitude of the N1-P2 complex have been studied in association with auditory system maturation and deprivation, rather than perceptual learning. Studies report significant changes in response latency and amplitude well into adolescence (Courchesne, 1978, 1990; Ponton, Don, Eggermont, Waring, & Masuda, 1996a, 1996b; Ponton, Eggermont, Kwong, & Don, 2000; Sharma, Kraus, McGee, & Nicol, 1997). At slower stimulus presentation rates, as age increases, P1 and N1 responses decrease in latency and P1 amplitude decreases and N1 amplitude increases. Injury-induced changes also affect the N1-P2 complex. Ponton, Vasama, Tremblay, Khosla, Kwong, and Don (2000) showed increases in P1-N1 peak-to-peak amplitude ipsilateral to the intact ear in unilaterally deafened adults. Whereas normal-hearing controls demonstrate asymmetric activity with greater activation over the hemisphere contralateral to the ear of stimulation, after unilateral deprivation, deafened subjects show an increase in neural activity ipsilateral to the ear of stimulation, resulting in increased P1-N1 symmetry. Ponton, Vasama, Tremblay, Khosla, Kwong, and Don (2000) concluded that unilateral hearing loss modifies neural activity in the central auditory pathways and that these changes are reflected in N1-P2 complex. In summary, these studies establish that experience-induced changes in neural activity can be reflected in the N1-P2 complex.

The purpose of this study is to determine whether training novel temporal cues alters the N1-P2 complex. Based on the previously described studies, we hypothesize that experiential learning, resulting in improved perception of VOT, will modify basic neural representation of sound and result in changes in N1 latency and amplitude. If the N1-P2 complex
reflects training-induced changes in perception, there is tremendous potential for clinical application. The N1-P2 complex could be used to monitor neurophysiologic changes during speech-sound acquisition after cochlear implantation, hearing aid use, or any other form of auditory learning. More importantly, physiologic correlates of perception could be particularly valuable when assessing individuals who are difficult to evaluate behaviorally.

However, if the N1-P2 complex is to be of clinical use, it is first necessary to determine whether the N1-P2 response is stable from test to retest, can reflect learning-related changes in individuals, and be recorded using a relatively simple montage. Therefore, our research questions were: 1) is the N1-P2 complex a stable response, showing no significant changes in latency or amplitude from test to retest? 2) does the N1-P2 complex reflect training-induced changes in neural activity, associated with improved VOT perception? and 3) are subtle temporal cues, such as 10 msec of voicing, reflected in the latency or amplitude of the N1-P2 complex?

Materials and Methods

Participants

Subjects were 10 normal-hearing, right-handed monolingual speakers of English. The age range was 21 to 31 yr and included six female and four male participants.

Stimuli

The stimuli were generated using a Klatt digital speech synthesizer (Klatt, 1980). Stimuli were synthesized speech tokens modeled after those used in comparable training experiment by McClaskey et al. (1983). The 11-item /ba/-/pa/ VOT continuum varied from -50 to +50 msec in 10-msec steps. A negative VOT indicates pre-voicing when laryngeal pulsing occurs during the stop closure period before the release. Pre-voiced stimuli were intentionally chosen to ensure that subjects were being trained to hear a novel contrast.

The steady-state portion of the stimuli consisted of the vowel /a/, which varied in duration relative to the VOT so that the overall duration for each stimulus remained constant at 180 msec. The formant values for this vowel were: F1 = 700 Hz, BW1 = 90 Hz; F2 = 1200 Hz, BW2 = 90 Hz; F3 = 2600 Hz, BW3 = 130 Hz, F4 = 3300 Hz, BW4 = 400 Hz; F5 = 3700 Hz, BW5 = 500 Hz. The fundamental frequency of the stimuli began at 120 Hz and then fell to 100 Hz during the steady-state portion of the vowel. Formant transitions were 40 msec in duration. To simulate a burst, a turbulent noise source (AF) 10 msec in duration and 60 dB in amplitude was added. The spectrum of the burst was centered around 2500 to 4000 Hz. A schematic representation of the pre-voiced stimuli is shown in Figure 1.

Procedure

The study took 10 days for each subject to complete. The procedure is described in flowchart form in Figure 2. Behavioral identification tests as well as electrophysiologic measures were conducted on Days 1 and 2. These tests served as test retest control measures to establish the stability of both identification and electrophysiologic measures from day to day. On Days 3, 5, 7, and 9, subjects participated in identification training sessions. Each subjects’ ability to identify the stimuli was tested on Days 4, 6, 8, and 10 (1 day after each identification training session). Electrophysiologic testing as well as tests of identification ability were repeated on Day 10 to provide post-test measures. Pre- and post-training measures were made by comparing identification test scores and electrophysiologic responses from Day 1 with Day 10.

Behavioral Testing and Training

Identification Testing (Days 1, 2, 4, 6, 8, and 10)

- During behavioral tests, subjects were seated in a sound treated booth, approximately 1 meter from a 15 inch computer monitor. On Day 1 (pre-test1), to
gain familiarity with the identification task, each subject identified what sound they heard from the 250 to 150 msec VOT continuum. When a single stimulus from the continuum was presented, each subject was asked to label the sound they heard. Three choices were provided on the computer screen: "mba," "ba," and "pa." No feedback was provided and no scores were calculated. Once the subject demonstrated that they understood the task, each subject was presented with either the 220 or 210 msec VOT stimuli and asked to identify the speech token as either "mba" or "ba." Both choices were presented as text on the computer monitor. Feedback in the form of a green reinforcement light appeared when the subject correctly identified the −30 msec VOT stimuli as "mba" and the −10 msec VOT stimuli as "ba." This task was repeated 50 times to train the listener to label the acoustic pre-voiced component as "mba." The −30 msec and −10 msec VOT stimuli were chosen based on a pilot study in which listeners were able to identify these stimuli well above chance without training. Therefore this session allowed the subjects to listen to the pre-voiced stimuli and orient themselves to the pre-voiced cue using an easy stimulus pair.

After the fading session, each subject began identification training using the 220 msec and 210 msec VOT stimuli. The 220 msec and 210 msec VOT stimuli were chosen because pilot data indicated that these two stimuli were difficult to identify as being different from each other, and the ability to learn to identify this novel distinction according to our previous training studies (Tremblay et al., 1997, 1998).

Identification training sessions consisted of four blocks of 50 trials in which either a −10 msec or −20 msec VOT stimulus was presented. Positive feedback (green reinforcement light) was given when the −20 msec VOT stimulus was labeled as “mba” and the −10 msec VOT labeled as “ba.” Each stimulus was presented randomly with an equal probability of occurrence. Percent correct was calculated based on the number of correct responses for each block of 50 trials. Performance on all four blocks of 50 trials was averaged to obtain a final training session score.
Data Collection (Days 1, 2, and 10) • During all sessions, subjects were seated in a sound-attenuating booth. Subjects watched closed-captioned videos of their choice while speech-sounds were presented to the right ear using Etymotic Research (ER3) insert earphones. Silver-silver chloride electrodes recorded were placed at Fz, Cz, Pz, over the frontal lobes (Fr and Fl) and temporal lobes (Tr and Tl), as well as the mastoids (A1 and A2). Electrode Tr was situated halfway between T4 and T6. Electrode Tl was situated halfway between T3 and T5 according to the International 10/20 (Jasper, 1958). A nose electrode served as the reference and a forehead electrode as ground. Eye blink activity was monitored using electrodes located on the superior and outer canthus of one eye. Epochs with artifact measuring in excess of 100 microvolts were rejected off-line. The remaining sweeps were prestimulus baselined, then referred to a common reference. Evoked responses were analog bandpass filtered on-line from 0.1 to 100 Hz (12 dB/octave roll off). Using a Neuroscan™ system, EEG channels were amplified with a gain × 500, and converted using an Analog-to-Digital Rate of 1 kHz. Responses were then filtered off-line from 1.0 Hz (high-pass filter, 24 dB/octave) to 40 Hz (low-pass filter, 24 dB/octave).

The recording window included a 100 msec pre-stimulus period and 500 msec poststimulus time. A PC-based system controlled the timing of stimulus presentation and delivered an external trigger to the evoked potential system. Because the N1 response is rate dependent (e.g., habituating at fast presentation rates), P1, N1 and P2 responses were recorded using two stimulus presentation rates: a slow inter-stimulus interval (ISI) of 910 msec, as well as a fast ISI of 390 msec (Davis, Mast, Yoshie, & Zerlin, 1966; Naatanen & Picton, 1987; Polich, Aung, & Dalessio, 1987). The 390 msec ISI was included to determine whether training-related changes could be detected at faster stimulus presentation rates, in a paradigm typically used to measure other ERPs such as the mismatch negativity (MMN). If so, training-related changes in the N1-P2 complex could be efficiently recorded simultaneously with discriminative ERPs such as the MMN. Order of presentation (fast versus slow) was randomized across subjects. Seven of the 10 subjects participating in the fast rate experiment also completed the slower rate condition. Each recording session took approximately 15 minutes with approximately 800 sweeps being averaged after artifact rejection in the fast condition, and 200 sweeps in the slow condition.

Behavior Before training, individuals had difficulty identifying the difference between the −20 and −10 msec VOT stimuli. Pre-test1 identification
scores ranged from 44 to 72% correct with a mean score of 56%. The ability to identify both the 20 msec VOT stimuli as “mba” and the 10 msec VOT stimuli as “ba” improved with training. After training, identification scores ranged from 68 to 100% correct with a mean score of 82%. Figure 4 illustrates the significant improvement from pre-test1 to post-test (t = 5.24, df = 9, p < 0.001).

Neurophysiology - Significant changes in waveform morphology were observed after training. Training-induced changes were most apparent at the slower stimulus presentation rate.

Slow Rate - As shown in Figures 5 and 6, pre-training ERPs recorded from electrode site Cz were dominated by a large positivity labeled P1 followed by clear N1 and P2 responses. After training, no significant changes in latencies were observed; however, there were significant increases in N1-P2 amplitude.

Latency measures were analyzed using a 2 × 2 × 3 repeated measures analysis of variance (ANOVA), comparing training (pre- versus post-training), stimuli (20 versus 10 msec VOT), and peak latency (P1, N1, and P2). No significant main effect or interactions for training were obtained [training, main effect, F = 3.15, p = 0.13; training × stimulus, F = 1.54, p = 0.26; training × peak latency, F = 2.09, p = 0.17; training × stimulus × peak latency F = 0.02, p = 0.98].

Amplitude changes were detected after train-

TABLE 1. Mean latency and amplitude differences from test to retest as well as paired t-test and p-values.

<table>
<thead>
<tr>
<th>20 ms VOT</th>
<th>Fast Rate</th>
<th>Slow Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-test1 versus Pre-test2</td>
<td>Mean Difference</td>
<td>df</td>
</tr>
<tr>
<td>P1 latency</td>
<td>-1.8 msec</td>
<td>9</td>
</tr>
<tr>
<td>N1 latency</td>
<td>3.5 msec</td>
<td>9</td>
</tr>
<tr>
<td>P2 latency</td>
<td>5.4 msec</td>
<td>9</td>
</tr>
<tr>
<td>P1-N1 amp</td>
<td>0.07 µV</td>
<td>9</td>
</tr>
<tr>
<td>N1-P2 amp</td>
<td>0.12 µV</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10 ms VOT</th>
<th>Fast Rate</th>
<th>Slow Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1 latency</td>
<td>2.7 msec</td>
<td>9</td>
</tr>
<tr>
<td>N1 latency</td>
<td>-2.3 msec</td>
<td>9</td>
</tr>
<tr>
<td>P2 latency</td>
<td>-4.7 msec</td>
<td>9</td>
</tr>
<tr>
<td>P1-N1 amp</td>
<td>0.05 µV</td>
<td>9</td>
</tr>
<tr>
<td>N1-P2 amp</td>
<td>0.07 µV</td>
<td>9</td>
</tr>
</tbody>
</table>

There were no significant changes in latency or amplitude of the neurophysiological responses from pre-test1 to pre-test2 according to paired t-tests. This was true regardless of stimulus (20 msec or 10 msec VOT) or presentation rate (fast or slow).

n/s = not significant.

Figure 3. Examples of pretraining waveforms from an individual subject, as well as group grand averages for pre-test1 (Day 1) and pre-test2 (Day 2), at fast and slow stimulus presentation rates, when recorded from electrode Cz. Black waveforms were recorded on Day 1. Gray waveforms were recorded on Day 2.

Figure 4. Pre-test1 and post-training mean identification scores ±1 standard error of the mean. There was significant improvement in the ability to identify the 20 msec VOT stimulus as /mba/ and 10 msec VOT stimulus as /ba/ after training (t = 4.53, df = 9, p < 0.001).
ing. A 2×2×2 repeated measures ANOVA comparing training (pre- versus post-), stimuli (−20 and −10 msec VOT), and peak-to-peak amplitude measures (P1-N1 and N1-P2), revealed significant main effects for training \((F = 7.83, p = 0.03) \), stimuli \((F = 10.04, p = 0.02) \) as well as a significant interaction for training × peak-to-peak amplitude \((F = 16.24, p = 0.01) \). Post hoc Scheffe tests comparing pre- versus post-training measures indicate that amplitude increased significantly for N1-P2 amplitude (mean difference = 1.33, critical difference = 0.61, \(p < 0.001 \)) but not for P1-N1 amplitude (mean difference = 0.19, critical difference = 0.62, \(p = 0.53 \)).

Fast Rate: Latency measures were analyzed using the same 2×2×3 repeated measures ANOVA used to analyze the slow rate data. No significant main effect or interactions for training were obtained [training, main effect, \(F = 0.12, p = 0.74 \); training × stimuli, \(F = 0.01, p = 0.99 \); training × peak latency, \(F = 0.05, p = 0.95 \); training × stimuli × peak latency \(F = 0.89, p = 0.43 \)].

Although N1-P2 amplitude appears to be enhanced with training (Fig. 5), a 2×2×2 repeated measures ANOVA revealed no significant main effects or interactions for training [main effect, \(F = 0.21, p = 0.66 \); training × stimuli, \(F = 0.08, p = 0.78 \); training × peak-to-peak amplitude, \(F = 3.26, p = 0.10 \); training × stimuli × peak-to-peak amplitude \(F = 0.51, p = 0.49 \)].

Neural Representation of Temporal Cues

Using the same repeated measures described above, there was a significant main effect for stimulus condition (−20 msec VOT versus −10 msec VOT) for amplitude but not latency measures [amplitude \(F = 10.04, p = 0.02 \); latency \(F = 0.26, p = 0.63 \)]. As previously described, there were also significant effects for training, as well as a significant interaction for training × amplitude at the slower stimulus presentation rate. Therefore, post hoc Scheffe tests were calculated to determine whether there were significant amplitude differences between the two stimuli before and after training, and whether these differences were seen in the P1-N1 or N1-P2 peak-to-peak amplitude.

Post hoc testing indicated that there were no significant differences in P1-N1 amplitude when
evoked by the −20 msec VOT and the −10 msec VOT stimuli before training (mean difference = 0.59, critical difference = 0.78, \(p = 0.13 \)) or after training (mean difference = 0.29, critical difference = 1.04, \(p = 0.55 \)). The same was true for N1-P2 amplitude. There were no significant differences in N1-P2 peak-to-peak amplitude evoked by the −20 msec VOT and the −10 msec VOT stimuli before training (mean difference = 0.27, critical difference = 0.84, \(p = 0.50 \)) or after training (mean difference = 0.32, critical difference = 1.03, \(p = 0.51 \)) (Fig. 7).

Summary of Results

In summary, the N1-P2 complex proved to be a stable response showing no significant changes from pre-test 1 to pre-test 2 especially at slow presentation rates. Through training, subjects learned to identify the −20 msec VOT stimulus as “mba” and −10 msec VOT stimulus as “ba.” After learning to identify the difference between the −20 msec and −10 msec VOT stimuli, significant increases in N1-P2 peak-to-peak amplitude were observed.

Before training, the N1-P2 response elicited by the −20 msec VOT stimuli was not significantly different from the response elicited by the −10 msec VOT response. Furthermore, there was no significant difference for N1-P2 amplitude after training because both the −10 and −20 msec VOT stimuli elicited larger responses.

DISCUSSION

Is the N1-P2 Complex a Stable Measure?

The N1-P2 complex proved to be a stable measure when recorded from electrode Cz, showing no significant changes in latency or amplitude from test to retest, at both slow and fast presentation rates. These results are consistent with others that have demonstrated significant intrasubject reliability (Escera & Grau, 1997; Pekkonen, Rinne, & Naatanen, 1995) and that repeated stimulus exposure does not significantly alter response latency or amplitude.

Does Speech-Sound Training Alter the N1-P2 Complex?

Auditory training altered the N1-P2 complex. Specifically, as the ability to differentiate the −20 and −10 msec VOT stimuli improved, N1-P2 amplitude increased. Increases in amplitude are thought to reflect increases in neural synchrony. Changes in neural firing patterns coinciding with learned behaviors are consistent with Hebbian principles of neural plasticity in that behaviorally important inputs that excite neurons, simultaneously in time, are mutually strengthened (Hebb, 1949). In this study, before training, the initial 10 msec portion of the /ba/ syllable was not meaningful because 10 msec differences in pre-voicing are not phonemic in the English language. Subjects perceived both pre-voiced sounds as the nearest familiar phonemic category, /ba/. However, when subjects learned that the initial portion of the /ba/ syllable contained an important temporal cue that differentiated the two stimuli, the onset of voicing triggered an increase in neural synchrony. Evidence of this change in neural synchrony, manifested as increased N1-P2 peak-to-peak amplitude, suggests that activation of the neural generators contributing to this ERP are enhanced by training. These findings provide motivation for studying the P2 response and what role it plays in perception.

Does the N1-P2 Reflect Subtle Differences in VOT?

Previous animal studies have shown monotonic changes in latency corresponding to VOT increments as small as 5 msec. Therefore, one might have expected that the N1 latency in response to the −20 msec VOT stimuli might occur 10 msec earlier than the N1 latency in response to the −10 msec VOT stimuli, particularly once the two stimuli were per-
ceived to be different from each other. However, no
differences in N1 latency were observed when sta-
tistically comparing responses elicited by the −20
msec VOT stimuli with responses elicited by the
−10 msec VOT stimuli either before or after
training.

Studies that report neural representation of fine-
grained changes in VOT (e.g., 5- or 10-msec incre-
ments) used animal subjects, making it possible to
record closer to the source of neural activation in
animals (Eggermont, 1995). Therefore, it could be
hypothesized that recording closer to the source in
humans might show distinct response patterns to
VOT increments as small as 10 msec. However,
when Steinschneider et al. (1999) recorded directly
from human auditory cortex using 20 msec VOT
increments ranging from 0 to 80 msec, responses
elicited by the 0 msec and 20 msec VOT stimuli were
similar in morphology. Distinct waveform morp-
hologies were only seen when VOT exceeded 40 msec.
Because perception rapidly changes from a voiced
stop consonant /ba/ to an unvoiced consonant /pa/ at
an interval of 20 to 40 msec VOT, Steinschneider et
al. (1999) suggests that distinct waveform represen-
tations may reflect categorical perception of stop
consonants.

The present study was not a categorical percep-
tion experiment; however, our results are consistent
with Steinschneider et al. (1999) in that neural
responses evoked by within category variants of the
phoneme /ba/ (i.e., −20 msec and −10 msec VOT
stimuli) do not appear different. The present study
also reinforces that within category distinctions can
be enhanced through training (Carney et al., 1977),
but that training participants to arbitrarily label
two different speech sounds does not result in dis-
tinct N1-P2 neural patterns. Increases in N1-P2
peak-to-peak amplitude were seen in response to
both stimuli.

Clinical Application

The N1-P2 complex holds promise for assessing
central speech representation and changes in repre-
sentation after listening training. These results are
timely given the recent surge of interest in the
neurophysiologic mechanisms underlying central
auditory processing disorders as well as learning
and reading disabilities (Nagarajan, Mahncke, Salz,
Tallal, Roberts, & Merzinech, 1999). The N1-P2
complex may provide a practical tool for clinicians
because these responses can be collected using most
commercially available systems, require little test-
ing time, and minimal off-line data manipulation
compared with other ERPs. For example, the MMN
has gained recent attention as a measure of central
speech-sound representation and it too is a preat-
tentive response (Kraus, Mcgee, Sharma, Carrell,
& Nicol, 1992; Kraus, McGee, Micco, Sharma, Carrell,
& Nicol, 1993; Kraus, McGee, Carrell, King, Trem-
blay, & Nicol, 1995; Kraus, McGee, Carrell, Zecker,
Nicol, & Koch, 1996; Martin, Kurtzberg, & Stapells,
1999; Sams, Paavilainen, Alho, & Naatanen, 1985;
Sandridge & Boothroyd, 1996; Tremblay et al., 1997,
1998). Although the MMN provides insight into
physiologic processes underlying speech discrimina-
tion and training-related plasticity, this ERP may
not be the most efficient response for assessing
speech-sound representation in individuals. The
MMN is difficult to extract from background electro-
encephalic noise and often requires prolonged test-
ing time and off-line analyses (McGee, Kraus, &
Nicol, 1997; Ponton, Don, Eggermont, & Kwong,
1997). As a result, clinical use of the MMN response
has had limited success.

Although these results encourage the clinical use
of the N1-P2 complex, immediate application is
premature. Many parametric and nonparametric
studies are still needed. Recent work with the MMN
has shown that there may be optimal presentation
rates, optimal recording periods, and optimal elec-
trode montages to view neural activity (McGee et al.,
in press; Ponton, Eggermont, Kwong, & Don, 2000).
This is probably true for the N1-P2 complex as well
(Chermak & Musiek, 1997; Ponton, Eggermont,
Kwong, & Don, 2000). For example, in the present
study, training-induced N1-P2 amplitude changes
at the fast rate were modest suggesting that train-
ing-induced changes are best detected at stimulus
presentation rates slower than traditionally used to
elicit the MMN.

Although this study and others establish that the
MMN and N1-P2 reflect changes in neural activity
that coincide with improved perception, a one-to-one
relationship between changes in perception and
changes in physiology, in individuals, has not been
found (Kraus et al., 1995; Tremblay et al., 1997,
1998). This may be attributed, in part, to the fact
that training-induced changes in physiology and
perception do not share the same time course. The
MMN and N1-P2 responses reflect preattentive pro-
cesses that are considered to be precursors to per-
ception. Therefore, training-induced physiologic
changes at a preattentive level do not guarantee
comparable changes in perception. Perception re-
quires retrieval and integration of neurophysiologic
codes into functional behavior. These processes can
be affected by cognition, memory and motivation.
Therefore, future studies need to be conducted to
improve our understanding of the relationship be-
tween preattentive ERPs and perception in individ-
uals to explore potential of these measures as objective correlates of perception.

Finally, little is known about the P2 response and why it is enhanced with training. Future studies should be directed at improving our understanding of the relationship between training-induced enhancements in P2 with coincident improvements in perception. Perhaps P2 enhancement is not reflective of increased temporal coding, but rather a by-product of the training task. Because N1 amplitude can be affected by states of arousal and attention, and P2 partly reflects auditory driven output of the mesencephalic reticular activating system, perhaps the training task activates a preattentive alerting mechanism, that contributes to improved perception, but is not necessarily responsible for temporal encoding (Naatanen & Picton, 1987; Rif, Hari, Hamalainen, & Sams, 1991; Wilkinson & Morlock, 1966; Yingling & Skinner, 1977).

Nonetheless, the present study affirms that the central auditory system is capable of change, and that changes in neural activity are reflected in the N1-P2 response. These findings introduce the N1-P2 complex as a potential clinical tool for measuring changes in speech perception. Although the N1-P2 complex is not conventionally thought to correspond directly to perception, the work of Steinschneider et al. (1999) as well as the results of this training study suggest that obligatory responses such as the N1-P2 complex are affected by experience.

CONCLUSION

1) The N1-P2 is a stable response, with peak latencies showing no significant change from test to retest, at slow and fast stimulus presentation rates. 2) The N1-P2 reflects training-induced changes in neural activity that coincide with improved perception. Training effects were most robust at slow presentation rates. 3) Future studies should be directed at improving our understanding of the relationship between preattentive ERPs and perception in individuals to explore potential application of these measures as objective measures of perception.

ACKNOWLEDGMENTS:

The authors thank the anonymous reviewers for their helpful comments. We also acknowledge the support from NIH-NIDCD, DC01510.

Address for correspondence: K. Tremblay, Ph.D., Dept. of Speech and Hearing Sciences, University of Washington, 1417 NE 42nd Street, Seattle, WA 98105.

Received March 23, 2000; accepted October 1, 2000

REFERENCES

McGee, T., King, C., Nicol, T., Tremblay, K., Cunningham, J.,
Allen, J., & Kraus, N. (in press). Long term habituation of the
speech-elicited mismatch negativity. Psychophysiology. 167.

elements of speech like stimuli are reflected in surface recorded
responses over the guinea pig temporal lobe. Journal of the

negativity? An assessment of methods for determining re-

replicability of the mismatch negativity. *Electroencephalogy
and Clinical Neurophysiology, 104*, 359–368.

electric and magnetic response to sound: A review and analysis of

Nagarajan, S., Mahanke H., Salz, T., Tallal P., Roberts, T., &
poor readers. Proceedings of the National Academy of Science of the
United States of America, 25, 6483–6488.

responses to acoustic change within a syllable. *Ear and Hearing,*
19, 290–297.

replicability of the mismatch negativity. *Electroencephalogy
and Clinical Neurophysiology, 96*, 564–554.

Poeppel, D., Yellin, E., Phillips, C., Roberts, T. P., Rowley, H. A.,
Wexler, K., & Marantz, A. (1996). Task-induced asymmetry of the
auditory evoked M100 neuromagnetic field elicited by

auditory evoked potentials: Intensity, inter-stimulus interval

Integrated mismatch negativity (MMN): A noise free repre-
sentation of evoked responses allowing single point distribu-
tion-free statistical tests. *Electroencephalogy and Clinical
Neurophysiology, 104*, 381–382.

Ponton, C. W., Don, M., Eggermont, J. J., Waring, M. D., &

Ponton, C. W., Don, M., Eggermont, J. J., Waring, M. D., &
function: Differences between normal hearing and cochlear

Ponton, C. W., Vasama, J. P., Tremblay, K., Khosla, D., Kwong,
B., & Don, M. (2001). Experience-related increases in inter-

attention affects two different areas in the human supratem-
poral cortex. *Electroencephalogy and Clinical Neurophysiology,*
79, 464–472.

neuromagnetic M100 reflects perceptual and acoustic stimulus

M100 as a function of tone frequency. *NeuroReport, 7*, 1138–
1140.

tials. *Electroencephalogy and Clinical Neurophysiology,*
62, 437–448.

speech to elicit the mismatch negativity. *Journal of the Amer-
ican Academy of Audiology, 7*, 105–112.

Scherg, M., & von Cramon, D. (1986). Two bilateral sources of the
late AEP as identified by a spatio-temporal dipole model.
Electroencephalogy and Clinical Neurophysiology, 62, 32–
44.

potential correlates of categorical perception of voice-onset
1083.

cross-language phonetic perception. *Journal of the Acoustical
Society of America,* 107, 2697–2703.

Sharma, A., Kraus, N, McGee, T., & Nicol, T. (1997). Develop-
mental changes in P1 and N1 central auditory responses
elicited by consonant-vowel syllables. *Electroencephalogy
and Clinical Neurophysiology, 104*, 540–545.

rate representation of voice-onset time in the chinchilla audi-
tory nerve. *Journal of the Acoustical Society of America,*

correlates of nonmonotonic temporal acuity for voice onset
time. *Journal of the Acoustical Society of America,* 90, 2441–
2449.

Steinschneider, M., Reser, D., Schroeder, C. E., & Arezzo, J. C.
consonant place of articulation in primary auditory cortex (A1)
of the monkey. *Brain Research, 674*, 147–152.

Steinschneider, M., Schroeder, C. E., Arezzo, J. C., & Vaughan,
H. G. (1994). Speech-evoked activity in primary auditory cor-
tor: Effects of voice onset time. *Electroencephalogy and Clinical
Neurophysiology, 92*, 30–43.

Steinschneider, M., Schroeder, C. E., Arezzo, J. C., & Vaughan,
boundary in primary auditory cortex (A1) of the awake mon-
key: Temporal response patterns. *Brain and Language,* 48,
326–340.

Steinschneider, M., Volkoc, I., Noh, M., Garell, P., & Howard, M.
(1999). Temporal encoding of the voice onsets time phonetic
parameter by field potentials recorded directly from human

auditory system plasticity: Generalization to novel stimuli
following listening training. *Journal of the Acoustical Society of
America,* 102, 3762–3773.

Tremblay, K., Kraus, N., & McGee, T. (1998). The time course of
auditory perceptual learning: Neurophysiologic changes dur-

evoked responses recorded from the human scalp. *Electroen-

broadband noise masking on cortical event-related poten-
tials to speech sounds /ba/ and /da/. *Ear and Hearing,* 19,
218–231.

and reaction time. *Electroencephalogy and Clinical Neuro-
physiology, 23*, 50–56.

auditory evoked response. *Electroencephalogy and Clinical
Neurophysiology, 39*, 609–620.

